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We attempt to define a coupled system consisting of two partition logics and we 
introduce a product of partition logics. These partition logics have a close 
connection with Moore and Mealy-type automata. We show how the coupled 
system of two automata is connected with the product of partition logics, and 
present some illustrative examples. 

1. I N T R O D U C T I O N  

In the axiomatic approach to quantum mechanics, the event structure 
of a physical system is identified with a quantum logic (Busch et  al., 1991) 
or an orthoalgebra (Foulis et  al., 1992; Randall and Foulis, 1981), while in 
the case of  classical mechanics, it is identified with a Boolean algebra (Pt~ik 
and PulmannovL 1991). Assume that we have two independent physical 
systems with event structures P and Q and we wish to regard them as a 
coupled system. The event structure L of this coupled system is usually called 
a tensor product of P and Q and we write L = P ® Q. 

Tensor products in various approaches have been studied in Aerts and 
Daubechies (1978), Foulis (1989), Foulis and Bennett (1993), Foulis and 
Ptfik (1995), Foulis and Randall (1981), Kl~iy et al. (1987), Lock (1990), 
Matolcsi (1975), Randall and Foulis (1981), Wilce (1990), and Zecca (1978). 
A tensor product of orthoalgebras has been investigated by Foulis and Bennett 
(1993) via a universal mapping property, and a tensor product of an orthoalge- 
bra and a Boolean algebra is given in Foulis and Ptzik (1995). 
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Somewhat more general structures than orthoaglebras are quasi-orthoal- 
gebras, for which a binary operation • is not, in general, associative. Very 
important examples of quasi-orthoalgebras, partition logics, have an intimate 
connection (Dvure~enskij et al., 1995) with the investigation of the empirical 
propositional structure of Moore and Mealy-type automata. 

The aim of  the present paper is to introduce a weaker form of  a tensor 
product of partition logics, a product of  partition logics, and to show its 
connection with automata. We show that this structure exists. 

2. O R T H O A L G E B R A S  

The notion of orthoalgebras (or quasi-orthoalgebras) goes back to axiom- 
atic models of  quantum mechanics introduced by Foulis and Randall (1981; 
Randall and Foulis, 1981) as special algebraic structures describing proposi- 
tional logics. 

A quasi-orthoalgebra is a set L endowed with two special elements 0, 
1 ~ L (0 :~ 1) and equipped with a partially defined binary operation • 
satisfying the following conditions for all a, b E L: 

(oa-i) If a • b is defined, then b (~ a is defined and a • b = b • a 
(commutativity law). 

(oa-ii) a • 0 is defined for any a e L and a • 0 = a. 
(oa-iii) For any a ~ L, there is an element a '  E L such that a O a '  is 

defined and a G a '  = 1 (orthocomplementation law). 
(oa-iv) If a • (a'  • b) is defined, then b = 0. 
(oa-v) If a • (a • b) is defined, then a = 0. 
(oa-vi) If a • b is defined, then a • (a • b)' is defined and b' = a 

• (a @ b)'. 

The following facts are true: 

Proposition 2.1. Let L be a quasi-orthoalgebra, a, b ~ L. Then: 
(a) 0' = 1 , 1 ' = 0 .  
(b)  ( a ' ) '  = a.  
(c) I f a e b  = a ( ] ) c ,  t henb  = c .  
(d) I f a O b  = l, t henb  = a' .  

The unique element a'  is called the orthocomplement of a E L, and the 
unary operation ': L - +  L defined by a ~ a ' ,  a E L, is said to be an 
orthocomplementation. We shall say that two elements a, b e L (i) are 
orthogonal, and write a 3_ b, iff a (D b is defined in L (it is clear that a _L 
b iff b _L a), and (ii) a -< b iff there is an element c E L with a • c = b. 
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It is easily shown that the relation ----- is reflexive and antisymmetric, 
but need not be transitive. An associative quasi-orthoalgebra, i.e., a quasi- 
orthoalgebra, for which the associative law 

(oa-vii) If a G b, (a G b) @ c are defined in L, so are b ~ c and a G 
( b O c ) , a n d ( a O b ) G c = a O ( b O c )  

holds is said to be an orthoalgebra (OA). If in L there are the elements (a 
G b) • c and a • b(Gc) and if they coincide, we denote it as a • b • c. 
In any orthoalgebra, --< is transitive. On other hand, it is possible to give an 
example of a quasi-orthoalgebra with transitive -< which does not correspond 
to any orthoalgebra. If the elements a • (b G c) and (a G b) • c exist in 
a quasi-orthoalgebra and if they coincide, we denote them as a G b G c. 

Due to Golfin (1987), an orthoalgebra is a set L with two special elements 
0, 1 ~ L (0 ~ 1) and endowed with a partial binary operation • satisfying 
(oa-i), (oa-ii), (oa-iii), (oa-vii), and: 

(oa-v*) If a G a is defined, then a = 0. 

The original idea of the partial binary operation • goes back to Boole's 
pioneering work (Boole, 1854), where he wrote a + b as the logical disjunction 
of events a and b when the logical conjunction ab = 0, so that, for mutually 
excluding events a and b, a + b is defined. This is all that is needed for 
probability theory: if ab = 0, then P(a + b) = P(a) + P(b). To avoid 
confusion, we write a G b for a + b when ab = O. 

Note that one can rewrite axioms for a Boolean algebra in terms of 
Boole's ideas of a + b. For more details, see Foulis and Bennett (1993). 

In addition, let L be an orthomodular poset (OMP) (or an orthomodular 
lattice, OML), i.e., a poset L with the least and last elements 0 and 1 and a 
unary operation _t: L --~ L, called an orthocomptementation, such that, for 
all a, b E L: 

(i) (a±) "L = a. 
(ii) I f a  <- b, then b ± --< a ±. 
(iii) a v a  ± = 1. 
(iv) I f a  -< b I (and we write a J_ b), then a v b E L. 
(v) I f a < - b ,  t h e n b =  a v ( a v b l )  ±. 

(For OML, L has to be additionally a lattice.) Then L can be organized into 
an OA if the binary operation • is defined via a • b exists in L iff a -< b ± 
and a • b := a v b. The unary operation ': L --4 L is defined via a' := a 1, 
a ~ L .  

We recall that if L is an OA and a, b ~ L are mutually orthogonal, then 
a, b -- a • b, and a G b is the minimal upper bound for a and b (i.e., a, b 
- - < a G b ,  and if there is c ~ L w i t h a ,  b - - < c - - < a O b ,  t h e n c  = a O b ) ,  
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but this does not mean that a v b exists in L, so that L cannot necessarily 
be an OMP. 

A subset A of  a quasi-OA (OA) L is a quasi-suborthoalgebra (suborthoal- 
gebra) of L if (i) 0, 1 • A; (ii) if a • A, then a '  • A; (iii) a, b • A with 
a 3_ b i m p l i e s a ~ b  • L. 

I f  a (quasi) suborthoalgebra A of  L is, in addition, a Boolean algebra 
with respect to -<, A is called a Boolean suborthoalgebra of L. Denote by 
VA and ^a the join and the meet taken only in A, respectively. Then, a G b 
= a v m b whenever a, b • A and L is an OA. A maximal Boolean suborthoalge- 
bra of  L is called a block. 

3. P A R T I T I O N  L O G I C S  

In this section, we present a notion of  partition logics which will have 
an intimate connection with special types of  automata, and which will general- 
ize the results of  Svozil (1993) and Schaller and Svozil (1994, 1995, 1996). 

Let L be a quasi-orthoalgebra with <--. A nonvoid subset I of  L is said 
to be an ideal of  L if: 

(i) I f a  • L b  • L , b - < a ,  t h e n b  e I. 
(ii) a, b • I with a 3_ b implies a • b • I. 

It is clear that 0 E I. An ideal I of  L is said to be (i) proper if I 4: L or, 
equivalently, 1 ~ I; (ii) prime if, for any a e L, either a • I or a' e I. We 
denote by P(L) the set of  all prime ideals in L. 

A probability measure (or also a state) on L is a mapping s: L ---> [0, 
1] such that (i) s(1) = 1 and (ii) s(a • b) = s(a) + s(b) whenever a 3_ b. 
A probability measure s is two-valued if s(a) • {0, 1 } for any a • L. 

We recall that there is a one-to-one correspondence between two-valued 
probability measures and prime ideals: I f  s is a two-valued probability mea- 
sure, then Is = {a • L: s(a) = 0} is a prime ideal; and if I is a prime ideal, 
then st: L ---> [0, 1] defined via st(a) = 0 iff a • L otherwise sl(a) = 1, is 
a two-valued probability measure on L. 

A set 5e of  probability measures on L is called separating if for all a, 
b • L, a 4: b, there is a probability measure s E 5? such that s(a) 4: s(b). 
L is called prime iff it has a separating set of  two-valued probability measure 
or, equivalently, for any different elements a, b • L there is a prime ideal I 
of  L such that a • I a n d b  ~ L 

Let ~ be a family of  quasi-orthoalgebras (or OAs, OMPs, Boolean 
algebras, etc.) satisfying the following conditions: For all P, Q • ~ ,  P n Q 
is a quasi-suborthoalgebra (subOA, sub OMP, Boolean subalgebra, etc.) of  
both P and Q, and the partial orderings and orthocomplementations coincide 



Product of Partition Logics 2381 

on P n Q. Define the set L = U := U{P: P ~ ~},  a relation G, and the 
unary operation ' as follows: 

(i) a ~) b iff there is a P E ~ such that a, b E P and a _l_p b, then a 
O b = a O p b .  

(ii) a '  = b iff there is a P ~ ~ such that a, b ~ P and a 'e = b. 

The set L with the above-defined • is called the pasting of the family ~ .  
Let ~t be a family of finite partitions of a fixed set X. The pasting of 

the family of Boolean algebras {BR: R ~ ~ }  is called a partition logic, and 
we denote it as a couple (X, ~t). 

We note that, for a, b ~ L = (X, ~t), a ~ b is defined on L iff there 
exists a decomposition R e ~ such that a, b ~ B(R) and a n b = 0, where 
B(R) is a Boolean algebra generated by R; then a ~) b := a U b. 

We recall that two quasi-orthoalgebras L~ and/--2 are isomorphic iff there 
is a one-to-one mapping ~b: Ll --~ L2 such that a • b is defined in Ll iff ¢(a) 
• qb(b) is defined in L2 and ~(a E) b) = ~(a) • dp(b). 

The following result (Dvure~enskij et al., 1995) describes quasi-orthoal- 
gebras isomorphic to partition logics. 

Theorem 3.1. A quasi-orthoalgebra L is isomorphic to a partition logic 
if and only if L is prime. 

It is worth noting that if in a prime quasi-orthoaigebra L there exist 
elements x := (a • b) • c and y := a ~) (b • c), for a, b, c ~ L, then x 
= y. Indeed, by Theorem 3.1, there is a separating system of two-valued 
probability measures on L, b °, and a probability measure s ~ ,9' such that 
s(x) 4: s(y). Then s(a ~ b) + s(c) 4: s(a) + s(b G c), which gives the 
contradiction s(a) + s(b) + s(c) 4: s(a) + s(b) + s(c). 

At any rate, the existence of one of x or y in L does not imply the 
existence of the second one in L; see Example 4.1 below. 

4. COUPLED SYSTEMS OF PARTITION LOGICS 

The tensor product of orthoalgebras in the category of orthoalgebras 
was studied by Foulis and Bennett (1993). They showed that if both orthoalge- 
bras P and Q have "enough" probability measures, then the tensor product 
of P and Q exists. However, they found an example of an orthoalgebra, the 
Fano plane (Fig. 1), for which the tensor product P ® P fails in the category 
of orthoalgebras. Dvure~enskij (1995) showed that if we use a more general 
structure, effect algebras, then the tensor product of the Fano plane with itself 
exists in the category of effect algebras. In general, if both effect algebras 
P and Q have a nonempty system of probability measures, then the tensor 
product P ® Q exists in the category of effect algebras. 
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f 
Fig. 1. The Fano plane. 

Partition logics have a separating system of two-valued probability mea- 
sures; unfortunately, they are not, in general, effect algebras, because they 
are not even (associative) orthoalgebras. Therefore, for the tensor product of 
partition logics we have to look for another way to introduce it. 

4.1. Product of Partition Logics 

Assume that (X, ~t) and (Y, 50) are two partition logics, where @ and 
50 are two systems of finite decompositions of X and Y respectively. Choose 
R ~ ~ and S E 50. Then R x S := {A X B: A E R, B ~ S} is a decomposition 
of X X Y. Define 

~t x 50:= { R x S : R ~ 2 t ~ , S ~  50} 

Then the partition logic {X X Y, ~ X 50} is called the product partition logic 
of (X, ~t) and (Y, 5°). 

Example 4.1. Let ~ = { 1, 2, 3, 4, 5, 6} and let B~ and B2 be the Boolean 
algebras generated by Rl := {{1}, {2}, {3}, {4}, {5, 6}} and R2 := {{1}, 
{2}, {3, 4}, {5}, {6} }, respectively. The system ( ~  {Rt, R2}) is a partition 
logic which is not a Boolean algebra, it is only a quasi-orthoalgebra. Then 
(1~ x ~ ,  {RI X Ri, R~ X R2, R2 X Rl, R2 X R2}) is a product partition logic 
of (12, {Ri, Rz}) with itself. 

Proposition 4.2. Let IX and v be probability measures on the partition 
logics (X, ~t) and (Y, 50), respectively, where card(Y) = n and 50 = {{Yl}, 
. . . .  { Y,} }, Yi E Y for i = 1 . . . . .  n, yi 4: yj f o r i  4 : j ,  a n d n  --> 1. Then 
there is a unique probability measure IX x v on (X X Y, ~t x 50) such that 

(Ix X v)(A × B) = p.(A)v(B), A E (X, ~ ) ,  B ~ (Y, 5?) (t) 

If, in addition, Ix and v are two-valued measures, so is Ix X v. 

Proof Let U be any element of the product partition logic L = (X x 
Y, fit X 50). Without loss of generality we can suppose that Y = { 1 . . . . .  n}. 
It is easy to show that U can be represented uniquely in the form U = 
U i%~ A i X {i}, where all Ai belong to the same Boolean algebra BR generated 
by a decomposition R E ~ ;  the case A~ = 0 is not excluded. 
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In addition, U := U~ t  Ai × {i} J_ U~L-i Bi X {i} =:  Vi f f  {Ai}in=l and 
{Bi}~=l belong to the same Boolean algebra BR and Ai n Bi = 0 for i = 1, 
. . . .  n, and in this case 

t! rl ii t l  

U A i X {i} G U Bi × {i} = U (A  i U Bi)  X {i} = U (A  i ~ Bi)  x {i} 
i= 1 i= 1 i= I i= t 

If now we define (Ix x v)(U) := ~i%1 lx(Ai)v({i}), then Ix X v is a well- 
defined mapping on L. It is simple to verify thatX × Y = U~'=~ X X {i}. Hence 

(Ix x v) ( l )  = (Ix x v)(X x Y) = ~ Ix(x)v({/}) = Ix(x)v(Y) = 1 
i=1 

Similarly, 

(" ) (IX X v)(U G V) = (IX X v) U (Ai O Bi) X 1i} 
i = l  

Ix(Ai • Bi)v( { i } ) 
i=1 

i=l 
(Ix(Ai) + Ix(Bi))v( { i}) 

(Ix x v)(U) + (Ix x v)(v)  

so that Ix X v is a probability measure on L satisfying (1). The uniqueness 
of Ix X v is now evident. • 

The probability measure Ix x v, if it exists, is said to be a product 
probability measure of  Ix and v. We note that the extension of Ix X v from 
(1) to a probability measure on the product of general partition logics seems 
to be open. 

4.2. Tensor Product of Prime Quasi-Orthoalgebras 

According to Theorem 3.1, any prime quasi-orthoalgebra is isomorphic 
to a partition logic. Therefore, the coupled system consisting of  two prime 
orthoalgebras P and Q being again a prime quasi-orthoalgebra can be called 
a tensor product of P and Q and it is denoted as P ® Q. In addition, they 
have an intimate connection with the product of isomorphic partition logics. 
For a rigorous introduction of the tensor product we need the following 
definitions. 
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Let P and L be two quasi-orthoalgebras. A mapping qb: P --4 L is said 
to be: 

(i) Amorphism iff d/)(1) = 1, andp  _L q,p,  q ~ P, implies +(p) _L ~b(q) 
and +(p G q) = ~b(p) ~ ~b(q). 

(ii) A monomorphism iff qb is a morphism and ~b(p) 3_ +(q) iff p 3_ q. 
(iii) An isomorphism iff qb is a surjective monomorphism. 

Let P, Q, L be quasi-orthoalgebras. A mapping 13: P x Q --) L is called 
a bimorphism iff: 

(i) a, b E P with a 3_ b, q e Q imply 13(a, q) 3- 13(b, q) and 13(a G b, 
q) = 13(a, q) G 13(b, q), 

(ii) c, d E Q with c 3_ d, p ~ P imply 13(p, c) 3_ 13(p, d) and 13(p, c 
• d) = 13(p, c) ~9 13(p, d). 

(iii) 13(1, I) = 1. 

If [3: P x Q --~ L is a bimorphism, then 13(., 1): P -9 L and 13(1, -): Q 
--) L are morphisms. Therefore, fo rp  E P and q ~ Q, we have 13(p, 1) ± = 
13(p±, 1), 13(1, q)J- = 13(1, q±), and 13(p, 0) = 13(0, q) = 0. 

Also, if a, b, p e P and c, d, q ~ Q, we have a --< b ~ 13(a, q) -< 13(b, 
q) and c -< d ~ 13(p, c) -< 13(p, d). 

Definition 4.3. Let P and Q be prime quasi-orthoalgebras. We say that 
a pair (T, "r) consisting of a prime quasi-orthoalgebra T and a bimorphism "r: 
P × Q --) T is a tensor product of  P and Q iff the following conditions 
are satisfied: 

(i) If L is a quasi-orthoalgebra and 13: P × Q -4 L is a bimorphism, 
there exists a morphism +: T --) L such that 13 = ~b o "r. 

(ii) For every element of t E T, there is a block B of  T such that t = 
~,"=l -r(p;, qi), where -r(p;, qi) belongs to the block B for i = 1 . . . . .  n. 

It is not hard to show that if a tensor product (T, 'r) of P and Q exists, 
it is unique up to an isomorphism, i.e., if (T, 'r) and (T*, 'r*) are tensor 
products of D-posets P and Q, then there is a unique isomorphism qb: T --4 
T* such that d~('r(p, q)) = "r*(p, q) for all p e P, q ~ Q. Unless confusion 
threatens, we usually refer to P ® Q rather than to (P ® Q, ®) as being a 
tensor product. 

Unfortunately, we do not know the conditions under which the tensor 
product of prime quasi-orthoalgebras exists in the category of prime quasi- 
orthoalgebras. 

If both components P and Q are prime orthoalgebras, then the tensor 
product of P and Q exists in the category of orthoalgebras. This follows from 
Theorem 6.1 of Foulis and Bennett (1993). Indeed, i f p  E P and q E Q are 
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two nonzero elements of the prime orthoalgebras P and Q, then there exist 
two probability measures Ix and v on P and Q such that Ix(p) = 1 = v(q) 
[ i fp  = 1 then ix(I) = 1 for any t x ; i f p  :~ 1, then 0 : / :p± 4= 1 and the 
primeness and the separateness of P entail the existence of a two-valued 
probability measure Ix with 0 = Ix(p±) :~ Ix(I) = 1]. By Theorem 6.1 of 
Foulis and Bennett (1993), this is a sufficient condition for the existence of 
the tensor product of P and Q in the category of orthoalgebras. In addition, 
for all probability measures Ix and v on P and Q, respectively, the product 
measure Ix × v, defined by Ix × v(p ® q) = Ix(p)v(q), p ~ P, q E Q, exists. 
However, we do not know whether this tensor product also exists in the 
category of prime quasi-orthoalgebras. 

It seems more hopeful to consider the coupled system consisting of a 
prime quasi-orthoalgebra and a Boolean algebra, called a bounded Boolean 
power of a prime quasi-orthoalgebra; see also similar problems in Dvureren- 
skij (1995) for D-posets and Foulis and Ptfik (1995) for orthoalgebras. We 
hope to present some results for these coupled systems in the future. 

5, REALIZATION BY AUTOMATA 

The product of finite automata logics has an intuitive and rather simple 
realization: If the sets of states of two automata Mm = (Si, 11, O1, 81, hi) and 
M2 = ($2, 12, Oz, ~2, h2) are mutually disjunct, then the automaton partition 
logic of the parallel decomposition M~ I[M2 of the two automata is the product 
{$1 x $2, ~1 x ~2} of  the automaton partition logics {$I, ~ l}  and {Sz, ~t2} 
associated with Ml and M2, respectively. For a definition of the notation, 
see below. 

5.1. M o o r e  and Mealy  A u t o m a t a  

Afinite sequential machine or automaton is a device with the following 
properties (Hartmanis and Stearns, 1966; Hopcroft and Ullman, 1979; Moore, 
1956): (i) a finite.set of inputs which can be applied in a sequential order; 
(ii) a finite set of internal configurations or states; (iii) a finite set of outputs; 
(iv) a setup such that the present internal configuration and input uniquely 
determine the next internal configuration and the output. 

A Moore (Mealy) automaton is a quintuple M = (S,/ ,  O, 8, h), where: 

(i) S is a finite (nonempty) set of states. 
(ii) I is a finite (nonempty) set of inputs. 
(iii) O is a finite (nonempty) set of outputs. 
(iv) 8: S × I --> S is a computable transition function. 
(v) k: S ---> O is a computable output function (Moore automaton). 
(v') h: S × O --> O is a computable output function (Mealy automaton). 
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In what follows and if not mentioned otherwise, s, i, and o stand for a 
particular internal state, input, and output, respectively. Moore (Mealy) 
machines are represented by flow tables and state graphs. 

Example 5.1. To illustrate this, assume a Mealy machine Ms = (S, I, O, 
~, h) which has n states, n inputs, and two outputs. That is, 

S = {1,2 . . . . .  n} 

I =  {1,2 . . . . .  n} 

o =  {0,1} 

Its transition and output functions are (8~.~ stands for the Kronecker delta 
function) 

~(s, i) = i 

{10 if s = i  
k(s , i )= g.~,i= if s4 :  i 

The flow table and state graph of this automaton are given in Fig. 2. 

Ms = 

s / i  i 2 

1 t 2 

2 1 2 

i 1 2 

n 1 2 

. . .  n 1 2 n 

.--  n 1 0 0 

, , .  n 0 1 . . .  0 

. , .  n 0 0 . . .  0 

, , -  n 0 0 . . .  1 

(a) 3,1 

3,0 3,0 

I 

1,1 2,1 

Fig. 2. The flow table and state graph of the Mealy automaton of  Example 5.1. 
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5.2. Machine  Isomorphism,  Serial and Parallel Decomposi t ions  

Two automata MI = (St, 11, Or, 81, hi) and M2 = ($2, 12, 02, 82, h2) of 
the same type are isomorphic if and only if there exist three one-to-one 
mappings f :  Si ---> $2, g: Ii ---> 12, and h: Ol ---> O2 such that f[Sl(sl,  il)] = 
82If(s1), g(il)] andf[hl(s l ,  il)] = h2[f(si), g(i0], where %- ~ Sj and/1. ~ I i, 
j ~ {1, 2}. The triple (f, g, h) is an isomorphism between Ml and M2. An 
isomorphism just renames the states, the inputs, and the outputs. From a 
purely input/output point of view, g as well as h (or h -I)  are combinatory 
circuits and M~ performs similarly to the serial decomposition (see below) 
h-IM2g of the machines g, M2, and h I. 

The serial connection of the two machines Ml = (Si, 11, O1, 81, hi) and 
M2 = ($2, 12, 02, 82, h2) for which O~ = / 2  is the machine in Hartmanis and 
Steams (1966, p. 42) 

M = MI --> M2 = (Sl × Sz, 11, Oz, 8, k) 

where 8[(sl, Sz), i] = (Sl(Sl, i), 82[S2, h(Sl, i)]) and k[(sl, s2), i] = k2[s2, hi(s, i)]. 
The parallel connection of the two machines M1 = (Si, 11, O1, 81, hi) 

and M2 = ($2, 12, O2, 8z, h2) is the machine in Hartmanis and Steams (1966, 
p. 48) 

M = Mi IIM2 = (s, x $2, 11 × I2, o t  × 02, 8, x) 

where 8[(st, sz), (il, i2)] = (81(sl, il), 82(s2, iz)) and h[(st, s~), (il, i2)] = 
(X~(sl, iO, Xz(s2, i2)). 

The logical structure of the initial-state identification problem can be 
defined as follows. Let us call a proposition concerning the initial state of 
the machine experimentally decidable if there is an experiment E which 
determines the truth value of  that proposition. This can be done by performing 
E, i.e., by the input of a sequence of  input symbols il, i2, i3 . . . . .  in associated 
with E, and by observing the output sequence 

hE(s) = X(s, il), X(8(q, il), i2) . . . . .  h ( 8 ( "  "8(q, i 0 " ' ,  i,,-t), in) 
n -  1 times 

The most general form of a prediction concerning the initial state s of  the 
machine is that the initial state s is contained in a subset P of the state set 
S. Therefore, we may identify propositions concerning the initial state with 
subsets of S. A subset P of S is then identified with the proposition that the 
initial state is contained in P. 

Let E be an experiment (a preset or adaptive one), and let he(s) denote 
the obtained output of  an initial state s. he defines a mapping of  S to the set 



2388 Dvure~enskij and Svozil 

I = { 1 , 2  . . . . .  , q  

{5} {1,2,3,4,6 . . . . .  n} 

Fig. 3. Haase diagram for Example 5.2. 

of output sequences 0" .  We define an equivalence relation on the state set 
S by 

E 
s ~ t  iff hE(s) = hE(t) 

E 
for any s, t e S. We denote the partition of S corresponding to = by S~ e=-. 
Obviously, the propositions decidable by the experiment E are the elements 

of the Boolean algebra generated by S/~,  denoted by Be. 
Let ~ be the set of all Boolean algebras Be. We call the partition logic 

(S, ~ )  an automaton propositional calculus. 

Example 5.2. In what follows, we explicitly construct the Mealy automa- 
ton Ms introduced before. Input/output experiments can be performed by the 
input of one symbol i (in this example, more inputs yield no finer partitions). 
Let us assume that one input i = 5. This experiment is able to distinguish 
between state s = 5 and all the other states; hence it induces a partition 
(suppose n > 5) 

v ( 5 ) =  {{5}, { 1 , 2 , 3 , 4 , 6  . . . . .  n}} 

After this experiment, information about the initial state is lost (irreversible 
model). Now consider the partitions v(i) of all possible experiments with one 
input x (all of them noncomeasurable). Every one of them generates a Boolean 
algebra of events with two atoms; e.g., v(5) generates a two-element Boolean 
algebra 22 whose Hasse diagram is drawn in Fig. 3. 

The automaton propositional calculus and the associated partition logic 
are the set of all partitions 

P = {v(i)li e I} 

Lattice-theoretically, this amounts to a pasting (Navara and Rogalewicz, 1991 ) 
of all the v(i)'s. In the specific example, the pasting is just the horizontal 
sum--only  the least and greatest elements 0 and { 1, 2 . . . . .  n} of each 22 
is identified--and one obtains a Chinese lantern lattice MO,. 
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